Cargando…

An Algebraic Geometric Approach to Separation of Variables

Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schöbel, Konrad (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-658-11408-4
003 DE-He213
005 20220116230504.0
007 cr nn 008mamaa
008 151015s2015 gw | s |||| 0|eng d
020 |a 9783658114084  |9 978-3-658-11408-4 
024 7 |a 10.1007/978-3-658-11408-4  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Schöbel, Konrad.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Algebraic Geometric Approach to Separation of Variables  |h [electronic resource] /  |c by Konrad Schöbel. 
250 |a 1st ed. 2015. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2015. 
300 |a XII, 138 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The Foundation: The Algebraic Integrability Conditions -- The Proof of Concept: A Complete Solution for the 3-Sphere -- The Generalisation: A Solution for Spheres of Arbitrary Dimension -- The Perspectives: Applications and Generalisations. 
520 |a Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together a great range of mathematics and mathematical physics, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads. "I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results."   (Jim Stasheff)   Contents The Foundation: The Algebraic Integrability Conditions The Proof of Concept: A Complete Solution for the 3-Sphere The Generalisation: A Solution for Spheres of Arbitrary Dimension The Perspectives: Applications and Generalisations   Target Groups Scientists in the fields of Mathematical Physics and Algebraic Geometry   The Author Konrad Schöbel studied physics and mathematics at Friedrich-Schiller University Jena (Germany) and Universidad de Granada (Spain) and obtained his PhD at the Université de Provence Aix-Marseille I (France). He now holds a postdoc position at Friedrich-Schiller University Jena and works as a research and development engineer for applications in clinical ultrasound diagnostics. 
650 0 |a Mathematical physics. 
650 0 |a Geometry. 
650 0 |a Algebra. 
650 1 4 |a Mathematical Physics. 
650 2 4 |a Geometry. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658114077 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-658-11408-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)