Cargando…

Multilevel Business Processes Modeling and Data Analysis /

Christoph G. Schuetz examines the conceptual modeling aspects of multilevel business processes without neglecting the implementation aspects. Furthermore, he investigates the advantages of hetero-homogeneous models for quantitative business process analysis. Multilevel models reflect the reality of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: G. Schuetz, Christoph (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:Christoph G. Schuetz examines the conceptual modeling aspects of multilevel business processes without neglecting the implementation aspects. Furthermore, he investigates the advantages of hetero-homogeneous models for quantitative business process analysis. Multilevel models reflect the reality of many information systems. In this respect process-aware information systems are no exception. Multilevel models capture interdependencies between business processes at different organizational levels and allow for a convenient representation of business process variability which, in turn, facilitates the analysis of business processes across different organizational units. Contents Core Metamodel for Multilevel Objects Multilevel Business Artifacts Hetero-Homogeneous Business Process Models Multilevel Business Process Automation Multilevel Business Process Intelligence Target Groups Researchers and students in business informatics, computer science, and business administration. Business process management professionals The Author Christoph G. Schuetz is a postdoctoral researcher at the Department of Business Informatics - Data & Knowledge Engineering of the Johannes Kepler University Linz, Austria. His research interests include data warehousing, semantic web, business process management, and data privacy.
Descripción Física:XXIV, 232 p. 42 illus. online resource.
ISBN:9783658110840