Cargando…

Energy Time Series Forecasting Efficient and Accurate Forecasting of Evolving Time Series from the Energy Domain /

Lars Dannecker developed a novel online forecasting process that significantly improves how forecasts are calculated. It increases forecasting efficiency and accuracy, as well as allowing the process to adapt to different situations and applications. Improving the forecasting efficiency is a key pre...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dannecker, Lars (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-658-11039-0
003 DE-He213
005 20220117024817.0
007 cr nn 008mamaa
008 150806s2015 gw | s |||| 0|eng d
020 |a 9783658110390  |9 978-3-658-11039-0 
024 7 |a 10.1007/978-3-658-11039-0  |2 doi 
050 4 |a QA76.9.D35 
050 4 |a Q350-390 
072 7 |a UMB  |2 bicssc 
072 7 |a GPF  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 005.73  |2 23 
082 0 4 |a 003.54  |2 23 
100 1 |a Dannecker, Lars.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Energy Time Series Forecasting  |h [electronic resource] :  |b Efficient and Accurate Forecasting of Evolving Time Series from the Energy Domain /  |c by Lars Dannecker. 
250 |a 1st ed. 2015. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2015. 
300 |a XIX, 231 p. 92 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The European Electricity Market: A Market Study -- The Current State of Energy Data Management and Forecasting -- The Online Forecasting Process: Efficiently Providing Accurate Predictions -- Optimizations on the Logical Layer: Context-Aware Forecasting -- Optimizations on the Physical Layer: A Forecast-Model-Aware Storage. 
520 |a Lars Dannecker developed a novel online forecasting process that significantly improves how forecasts are calculated. It increases forecasting efficiency and accuracy, as well as allowing the process to adapt to different situations and applications. Improving the forecasting efficiency is a key pre-requisite for ensuring stable electricity grids in the face of an increasing amount of renewable energy sources. It is also important to facilitate the move from static day ahead electricity trading towards more dynamic real-time marketplaces. The online forecasting process is realized by a number of approaches on the logical as well as on the physical layer that we introduce in the course of this book. Nominated for the Georg-Helm-Preis 2015 awarded by the Technische Universität Dresden. Contents The European Electricity Market: A Market Study The Current State of Energy Data Management and Forecasting The Online Forecasting Process: Efficiently Providing Accurate Predictions Optimizations on the Logical Layer: Context-Aware Forecasting Optimizations on the Physical Layer: A Forecast-Model-AwareStorage Target Groups Lecturers and Students of Computer Science, especially in the Field of Database Technology, Data Analytics, Time Series Analysis, and Data Mining Data Analysts, Energy Time Series Modeling, Transmission System Operators, Software Developers The Author Lars Dannecker holds a diploma in media computer science from the Technische Universität Dresden and is pursuing a doctorate as a member of the Database Technology Group led by Prof. Dr.-Ing. Wolfgang Lehner. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Computer science. 
650 0 |a Computer networks . 
650 1 4 |a Data Structures and Information Theory. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Computer Communication Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658110383 
776 0 8 |i Printed edition:  |z 9783658110406 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-658-11039-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)