Cargando…

Analysis and Design of Machine Learning Techniques Evolutionary Solutions for Regression, Prediction, and Control Problems /

Manipulating or grasping objects seems like a trivial task for humans, as these are motor skills of everyday life. Nevertheless, motor skills are not easy to learn for humans and this is also an active research topic in robotics. However, most solutions are optimized for industrial applications and,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stalph, Patrick (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-658-04937-9
003 DE-He213
005 20220114194614.0
007 cr nn 008mamaa
008 140206s2014 gw | s |||| 0|eng d
020 |a 9783658049379  |9 978-3-658-04937-9 
024 7 |a 10.1007/978-3-658-04937-9  |2 doi 
050 4 |a TJ212-225 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Stalph, Patrick.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analysis and Design of Machine Learning Techniques  |h [electronic resource] :  |b Evolutionary Solutions for Regression, Prediction, and Control Problems /  |c by Patrick Stalph. 
250 |a 1st ed. 2014. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2014. 
300 |a XIX, 155 p. 62 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction and Motivation -- Introduction to Function Approximation and Regression -- Elementary Features of Local Learning Algorithms -- Algorithmic Description of XCSF -- How and Why XCSF works -- Evolutionary Challenges for XCSF -- Basics of Kinematic Robot Control -- Learning Directional Control of an Anthropomorphic Arm -- Visual Servoing for the iCub -- Summary and Conclusion. 
520 |a Manipulating or grasping objects seems like a trivial task for humans, as these are motor skills of everyday life. Nevertheless, motor skills are not easy to learn for humans and this is also an active research topic in robotics. However, most solutions are optimized for industrial applications and, thus, few are plausible explanations for human learning. The fundamental challenge, that motivates Patrick Stalph, originates from the cognitive science: How do humans learn their motor skills? The author makes a connection between robotics and cognitive sciences by analyzing motor skill learning using implementations that could be found in the human brain - at least to some extent. Therefore three suitable machine learning algorithms are selected - algorithms that are plausible from a cognitive viewpoint and feasible for the roboticist. The power and scalability of those algorithms is evaluated in theoretical simulations and more realistic scenarios with the iCub humanoid robot. Convincing results confirm the applicability of the approach, while the biological plausibility is discussed in retrospect.     Contents How do humans learn their motor skills Evolutionarymachinelearningalgorithms Applicationtosimulatedrobots   Target Groups Researchers interested in artificial intelligence, cognitive sciences or robotics Roboticists interested in integrating machine learning   About the Author Patrick Stalph was a Ph.D. student at the chair of Cognitive Modeling, which is led by Prof. Butz at the University of Tübingen. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Computer science. 
650 0 |a Neurosciences. 
650 1 4 |a Control, Robotics, Automation. 
650 2 4 |a Computer Science. 
650 2 4 |a Neuroscience. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658049362 
776 0 8 |i Printed edition:  |z 9783658049386 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-658-04937-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)