Cargando…

Recommender Systems and the Social Web Leveraging Tagging Data for Recommender Systems /

There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gedikli, Fatih (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-658-01948-8
003 DE-He213
005 20220112191717.0
007 cr nn 008mamaa
008 130330s2013 gw | s |||| 0|eng d
020 |a 9783658019488  |9 978-3-658-01948-8 
024 7 |a 10.1007/978-3-658-01948-8  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Gedikli, Fatih.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Recommender Systems and the Social Web  |h [electronic resource] :  |b Leveraging Tagging Data for Recommender Systems /  |c by Fatih Gedikli. 
250 |a 1st ed. 2013. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2013. 
300 |a XI, 112 p. 29 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Recommender Systems -- Social Tagging -- Algorithms -- Explanations. 
520 |a There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user's individual preferences from the Social Web. This opens up completely new opportunities and challenges for recommender systems research. Fatih Gedikli deals with the question of how user-provided tagging data can be used to build better recommender systems. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources. The author also proposes algorithms which exploit the user-provided tagging data and produce more accurate recommendations. On the basis of this idea, he shows how tags can be used to explain to the user the automatically generated recommendations in a clear and intuitively understandable form. With his book, Fatih Gedikli gives us an outlook on the next generation of recommendation systems in the Social Web sphere. Contents -  Recommender Systems -  Social Tagging -  Algorithms -  Explanations   Target Groups ·         Researchers and students of computer science ·         Computer and web programmers   The Author Dr. Fatih Gedikli is a research assistant in computer science at TU Dortmund, Germany. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval systems. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Human-computer interaction. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658019471 
776 0 8 |i Printed edition:  |z 9783658019495 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-658-01948-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)