Cargando…

Subspace Methods for Pattern Recognition in Intelligent Environment

This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to ext...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Chen, Yen-Wei (Editor ), C. Jain, Lakhmi (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Computational Intelligence, 552
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-54851-2
003 DE-He213
005 20220113084342.0
007 cr nn 008mamaa
008 140407s2014 gw | s |||| 0|eng d
020 |a 9783642548512  |9 978-3-642-54851-2 
024 7 |a 10.1007/978-3-642-54851-2  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Subspace Methods for Pattern Recognition in Intelligent Environment  |h [electronic resource] /  |c edited by Yen-Wei Chen, Lakhmi C. Jain. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 199 p. 99 illus., 52 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 552 
505 0 |a Active Shape Model and Its Application to Face Alignment -- Condition Relaxation in Conditional Statistical Shape Models --  Independent Component Analysis and Its Application to Classification of High-Resolution Remote Sensing Images -- Subspace Construction from Artificially Generated Images for Traffic Sign Recognition -- Local Structure Preserving based Subspace Analysis Methods and Applications -- Sparse Representation for Image Super-Resolution -- Sampling and Recovery of Continuously-Defined Sparse Signals and Its Applications -- Tensor-Based Subspace Learning for Multi-Pose Face Synthesis. 
520 |a This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Chen, Yen-Wei.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a C. Jain, Lakhmi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642548505 
776 0 8 |i Printed edition:  |z 9783642548529 
776 0 8 |i Printed edition:  |z 9783662501900 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 552 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-54851-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)