Cargando…

Recommendation Systems in Software Engineering

With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data. This book collects, structures, and formalizes kn...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Robillard, Martin P. (Editor ), Maalej, Walid (Editor ), Walker, Robert J. (Editor ), Zimmermann, Thomas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-45135-5
003 DE-He213
005 20220118055336.0
007 cr nn 008mamaa
008 140430s2014 gw | s |||| 0|eng d
020 |a 9783642451355  |9 978-3-642-45135-5 
024 7 |a 10.1007/978-3-642-45135-5  |2 doi 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
072 7 |a UMZ  |2 thema 
082 0 4 |a 005.1  |2 23 
245 1 0 |a Recommendation Systems in Software Engineering  |h [electronic resource] /  |c edited by Martin P. Robillard, Walid Maalej, Robert J. Walker, Thomas Zimmermann. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 562 p. 109 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 An Introduction to Recommendation Systems in Software Engineering -- Part I Techniques -- 2 Basic Approaches in Recommendation Systems -- 3 Data Mining -- 4 Recommendation Systems in-the-Small -- 5 Source Code Based Recommendation Systems -- 6 Mining Bug Data -- 7 Collecting and Processing Interaction Data for Recommendation Systems -- 8 Developer Profiles for Recommendation Systems -- 9 Recommendation Delivery -- Part II Evaluation -- 10 Dimensions and Metrics for Evaluating Recommendation Systems -- 11 Benchmarking -- 12 Simulation -- 13 Field Studies -- Part III Applications -- 14 Reuse-Oriented Code Recommendation Systems -- 15 Recommending Refactoring Operations in Large Software Systems -- 16 Recommending Program Transformations -- 17 Recommendation Systems in Requirements Discovery -- 18 Changes, Evolution and Bugs -- 19 Recommendation Heuristics for Improving Product Line Configuration Processes. 
520 |a With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data. This book collects, structures, and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: "Part I - Techniques" introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow. "Part II - Evaluation" summarizes methods and experimental designs for evaluating recommendations in software engineering. "Part III - Applications" describes needs, issues, and solution concepts involved in entire recommendation systems for specific software engineering tasks, focusing on the engineering insights required to make effective recommendations. The book is complemented by the webpage rsse.org/book, which includes free supplemental materials for readers of this book and anyone interested in recommendation systems in software engineering, including lecture slides, data sets, source code, and an overview of people, groups, papers, and tools with regard to recommendation systems in software engineering. The book is particularly well-suited for graduate students and researchers building new recommendation systems for software engineering applications or in other high-tech fields. It may also serve as the basis for graduate courses on recommendation systems, applied data mining, or software engineering. Software engineering practitioners developing recommendation systems or similar applications with predictive functionality will also benefit from the broad spectrum of topics covered. 
650 0 |a Software engineering. 
650 0 |a Electronic data processing-Management. 
650 0 |a Information storage and retrieval systems. 
650 1 4 |a Software Engineering. 
650 2 4 |a IT Operations. 
650 2 4 |a Information Storage and Retrieval. 
700 1 |a Robillard, Martin P.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maalej, Walid.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Walker, Robert J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zimmermann, Thomas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642451348 
776 0 8 |i Printed edition:  |z 9783642451362 
776 0 8 |i Printed edition:  |z 9783662524046 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-45135-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)