Cargando…

Prediction and Classification of Respiratory Motion

This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contrib...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lee, Suk Jin (Autor), Motai, Yuichi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Studies in Computational Intelligence, 525
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-41509-8
003 DE-He213
005 20220119145445.0
007 cr nn 008mamaa
008 131025s2014 gw | s |||| 0|eng d
020 |a 9783642415098  |9 978-3-642-41509-8 
024 7 |a 10.1007/978-3-642-41509-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Lee, Suk Jin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Prediction and Classification of Respiratory Motion  |h [electronic resource] /  |c by Suk Jin Lee, Yuichi Motai. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a IX, 167 p. 67 illus., 65 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 525 
505 0 |a Review: Prediction of Respiratory Motion -- Phantom: Prediction of Human Motion with Distributed Body Sensors -- Respiratory Motion Estimation with Hybrid Implementation -- Customized Prediction of Respiratory Motion -- Irregular Breathing Classification from Multiple Patient Datasets -- Conclusions and Contributions. 
520 |a This book describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. This book presents a customized prediction of respiratory motion with clustering from multiple patient interactions. The proposed method contributes to the improvement of patient treatments by considering breathing pattern for the accurate dose calculation in radiotherapy systems. Real-time tumor-tracking, where the prediction of irregularities becomes relevant, has yet to be clinically established. The statistical quantitative modeling for irregular breathing classification, in which commercial respiration traces are retrospectively categorized into several classes based on breathing pattern are discussed as well. The proposed statistical classification may provide clinical advantages to adjust the dose rate before and during the external beam radiotherapy for minimizing the safety margin. In the first chapter following the Introduction  to this book, we review three prediction approaches of respiratory motion: model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the following chapter, we present a phantom study-prediction of human motion with distributed body sensors-using a Polhemus Liberty AC magnetic tracker. Next we describe respiratory motion estimation with hybrid implementation of extended Kalman filter. The given method assigns the recurrent neural network the role of the predictor and the extended Kalman filter the role of the corrector. After that, we present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction, we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. We have evaluated the new algorithm by comparing the prediction overshoot and the tracking estimation value. The experimental results of 448 patients' breathing patterns validated the proposed irregular breathing classifier in the last chapter. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Medical informatics. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Health Informatics. 
700 1 |a Motai, Yuichi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642415104 
776 0 8 |i Printed edition:  |z 9783642415081 
776 0 8 |i Printed edition:  |z 9783662510643 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 525 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-41509-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)