|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-642-41425-1 |
003 |
DE-He213 |
005 |
20220117191625.0 |
007 |
cr nn 008mamaa |
008 |
131104s2014 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642414251
|9 978-3-642-41425-1
|
024 |
7 |
|
|a 10.1007/978-3-642-41425-1
|2 doi
|
050 |
|
4 |
|a QA370-380
|
072 |
|
7 |
|a PBKJ
|2 bicssc
|
072 |
|
7 |
|a MAT007000
|2 bisacsh
|
072 |
|
7 |
|a PBKJ
|2 thema
|
082 |
0 |
4 |
|a 515.35
|2 23
|
100 |
1 |
|
|a Li, Tatsien.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Mathematical Model of Spontaneous Potential Well-Logging and Its Numerical Solutions
|h [electronic resource] /
|c by Tatsien Li, Yongji Tan, Zhijie Cai, Wei Chen, Jingnong Wang.
|
250 |
|
|
|a 1st ed. 2014.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2014.
|
300 |
|
|
|a VII, 67 p. 28 illus., 14 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a SpringerBriefs in Mathematics,
|x 2191-8201
|
505 |
0 |
|
|a Preface -- Modeling -- Properties of solutions -- Limiting behavior -- Techniques of solution -- Numerical simulation -- Bibliography.
|
520 |
|
|
|a Spontaneous potential (SP) well-logging is one of the most common and useful well-logging techniques in petroleum exploitation. This monograph is the first of its kind on the mathematical model of spontaneous potential well-logging and its numerical solutions. The mathematical model established in this book shows the necessity of introducing Sobolev spaces with fractional power, which seriously increases the difficulty of proving the well-posedness and proposing numerical solution schemes. In this book, in the axi-symmetric situation the well-posedness of the corresponding mathematical model is proved and three efficient schemes of numerical solution are proposed, supported by a number of numerical examples to meet practical computation needs.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
0 |
|a Geophysics.
|
650 |
|
0 |
|a Numerical analysis.
|
650 |
|
0 |
|a Functional analysis.
|
650 |
1 |
4 |
|a Differential Equations.
|
650 |
2 |
4 |
|a Geophysics.
|
650 |
2 |
4 |
|a Numerical Analysis.
|
650 |
2 |
4 |
|a Functional Analysis.
|
700 |
1 |
|
|a Tan, Yongji.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Cai, Zhijie.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Chen, Wei.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Wang, Jingnong.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642414268
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642414244
|
830 |
|
0 |
|a SpringerBriefs in Mathematics,
|x 2191-8201
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-642-41425-1
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|