Cargando…

Uncertainty Modeling for Data Mining A Label Semantics Approach /

Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling un...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Qin, Zengchang (Autor), Tang, Yongchuan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Advanced Topics in Science and Technology in China,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-41251-6
003 DE-He213
005 20220118173536.0
007 cr nn 008mamaa
008 141030s2014 gw | s |||| 0|eng d
020 |a 9783642412516  |9 978-3-642-41251-6 
024 7 |a 10.1007/978-3-642-41251-6  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Qin, Zengchang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Uncertainty Modeling for Data Mining  |h [electronic resource] :  |b A Label Semantics Approach /  |c by Zengchang Qin, Yongchuan Tang. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XIX, 291 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Topics in Science and Technology in China,  |x 1995-6827 
520 |a Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.   Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computer networks . 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a Tang, Yongchuan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642412523 
776 0 8 |i Printed edition:  |z 9783642412509 
776 0 8 |i Printed edition:  |z 9783662520208 
830 0 |a Advanced Topics in Science and Technology in China,  |x 1995-6827 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-41251-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)