Cargando…

Telegraph Processes and Option Pricing

The telegraph process is a useful mathematical model for describing the stochastic motion of a particle that moves with finite speed on the real line and alternates between two possible directions of motion at random time instants. That is why it can be considered as the finite-velocity counterpart...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kolesnik, Alexander D. (Autor), Ratanov, Nikita (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-40526-6
003 DE-He213
005 20220119213700.0
007 cr nn 008mamaa
008 131017s2013 gw | s |||| 0|eng d
020 |a 9783642405266  |9 978-3-642-40526-6 
024 7 |a 10.1007/978-3-642-40526-6  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Kolesnik, Alexander D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Telegraph Processes and Option Pricing  |h [electronic resource] /  |c by Alexander D. Kolesnik, Nikita Ratanov. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 128 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-5458 
505 0 |a Preface -- 1.Preliminaries -- 2.Telegraph Process on the Line -- 3.Functionals of Telegraph Process -- 4.Asymmetric Jump-Telegraph Processes -- 5.Financial Modelling and Option Pricing -- Index.  . 
520 |a The telegraph process is a useful mathematical model for describing the stochastic motion of a particle that moves with finite speed on the real line and alternates between two possible directions of motion at random time instants. That is why it can be considered as the finite-velocity counterpart of the classical Einstein-Smoluchowski's model of the Brownian motion in which the infinite speed of motion and the infinite intensity of the alternating directions are assumed. The book will be interesting to specialists in the area of diffusion processes with finite speed of propagation and in financial modelling. It will also be useful for students and postgraduates who are taking their first steps in these intriguing and attractive fields. 
650 0 |a Statistics . 
650 1 4 |a Statistics. 
700 1 |a Ratanov, Nikita.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642405273 
776 0 8 |i Printed edition:  |z 9783642405259 
830 0 |a SpringerBriefs in Statistics,  |x 2191-5458 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-40526-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)