Cargando…

Constant Mean Curvature Surfaces with Boundary

The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media, or for capillary phenomena...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: López, Rafael (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-39626-7
003 DE-He213
005 20220115040502.0
007 cr nn 008mamaa
008 130830s2013 gw | s |||| 0|eng d
020 |a 9783642396267  |9 978-3-642-39626-7 
024 7 |a 10.1007/978-3-642-39626-7  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a López, Rafael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Constant Mean Curvature Surfaces with Boundary  |h [electronic resource] /  |c by Rafael López. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 292 p. 64 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Introduction -- Surfaces with Constant Mean Curvature -- Constant Mean Curvature Embedded Surfaces -- The Flux Formula for Constant Mean Curvature Surfaces -- The Area and the Volume of a Constant Mean Curvature Surface -- Constant Mean Curvature Discs with Circular Boundary -- The Dirichlet Problem of the CMC Equation -- The Dirichlet Problem in Unbounded Domains -- Constant Mean Curvature Surfaces in Hyperbolic Space -- The Dirichlet Problem in Hyperbolic Space -- Constant Mean Curvature Surfaces in Lorentz-Minkowski Space -- Appendix: A. The Variation Formula of the Area and the Volume -- B. Open Questions -- References. 
520 |a The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media, or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields.   While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of "compact surfaces with boundaries," narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case; and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs.   The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems. 
650 0 |a Geometry, Differential. 
650 0 |a Differential equations. 
650 0 |a Geometry. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Differential Equations. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642396274 
776 0 8 |i Printed edition:  |z 9783642396250 
776 0 8 |i Printed edition:  |z 9783662512562 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-39626-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)