Cargando…

The Concept of Stability in Numerical Mathematics

In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, whi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hackbusch, Wolfgang (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Series in Computational Mathematics, 45
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-39386-0
003 DE-He213
005 20220120001855.0
007 cr nn 008mamaa
008 140206s2014 gw | s |||| 0|eng d
020 |a 9783642393860  |9 978-3-642-39386-0 
024 7 |a 10.1007/978-3-642-39386-0  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Hackbusch, Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Concept of Stability in Numerical Mathematics  |h [electronic resource] /  |c by Wolfgang Hackbusch. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 188 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 2198-3712 ;  |v 45 
505 0 |a Preface -- Introduction -- Stability of Finite Algorithms -- Quadrature -- Interpolation -- Ordinary Differential Equations -- Instationary Partial Difference Equations -- Stability for Discretisations of Elliptic Problems -- Stability for Discretisations of Integral Equations -- Index. 
520 |a In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.  . 
650 0 |a Numerical analysis. 
650 0 |a Differential equations. 
650 0 |a Integral equations. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Differential Equations. 
650 2 4 |a Integral Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642393877 
776 0 8 |i Printed edition:  |z 9783642393853 
776 0 8 |i Printed edition:  |z 9783662513712 
830 0 |a Springer Series in Computational Mathematics,  |x 2198-3712 ;  |v 45 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-39386-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)