Cargando…

Erdös Centennial

Paul Erdös was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his wo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Lovász, László (Editor ), Ruzsa, Imre (Editor ), Sós, Vera T. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Bolyai Society Mathematical Studies, 25
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-39286-3
003 DE-He213
005 20230825090854.0
007 cr nn 008mamaa
008 140124s2013 gw | s |||| 0|eng d
020 |a 9783642392863  |9 978-3-642-39286-3 
024 7 |a 10.1007/978-3-642-39286-3  |2 doi 
050 4 |a QA297.4 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
072 7 |a PBD  |2 thema 
082 0 4 |a 511.1  |2 23 
245 1 0 |a Erdös Centennial  |h [electronic resource] /  |c edited by László Lovász, Imre Ruzsa, Vera T. Sós. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 720 p. 33 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Bolyai Society Mathematical Studies,  |x 2947-9460 ;  |v 25 
505 0 |a Contents -- Preface -- Alon, N.: Paul Erdös and Probabilistic Reasoning -- Benjamini, I.: Euclidean vs. Graph Metric -- Bollobas, B. and Riordan, O.: The Phase Transition in the Erdös-Rényi Random Graph Process -- Bourgain, J.: Around the Sum-product Phenomenon -- Breuillard, E., Green, B. and Tao, T.: Small Doubling in Groups -- Diamond, H. G.: Erdös and Multiplicative Number Theory -- Füredi, Z. and Simonovits, M.: The History of Degenerate (Bipartite) Extremal Graph Problems -- Gowers, W. T.: Erdös and Arithmetic Progressions -- Graham, R. L.: Paul Erdös and Egyptian Fractions -- Györy, K.: Perfect Powers in Products with Consecutive Terms from Arithmetic Progressions -- Komjáth, P.: Erdös's Work on Infinite Graphs -- Kunen, K.: The Impact of Paul Erd˝os on Set Theory -- Mauldin, R. D.: Some Problems and Ideas of Erdös in Analysis and Geometry -- Montgomery, H. L.: L2 Majorant Principles -- Nesetril, J.: A Combinatorial Classic - Sparse Graphs with High Chromatic Number -- Nguyen, H. H. and Vu, V. H.: Small Ball Probability, Inverse Theorems, and Applications -- Pach, J.: The Beginnings of Geometric Graph Theory -- Pintz, J.: Paul Erdös and the Difference of Primes -- Pollack, P. and Pomerance, C.: Paul Erdös and the Rise of Statistical Thinking in Elementary Number Theory -- Rödl, V. and Schacht, M.: Extremal Results in Random Graphs.-Schinzel, A.: Erdös's Work on the Sum of Divisors Function and on Euler's Function -- Shalev, A.: Some Results and Problems in the Theory of Word Maps -- Tenenbaum, G.: Some of Erdös' Unconventional Problems in Number Theory, Thirty-four Years Later -- Totik, V.: Erdös on Polynomials -- Vertesi, P.: Paul Erdös and Interpolation: Problems, Results, New Developments. 
520 |a Paul Erdös was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, this volume undertakes the almost impossible task to describe the ways in which problems raised by him and topics initiated by him (indeed, whole branches of mathematics) continue to flourish. Written by outstanding researchers in these areas, these papers include extensive surveys of classical results as well as of new developments. 
650 0 |a Discrete mathematics. 
650 0 |a Number theory. 
650 0 |a Probabilities. 
650 0 |a Machine theory. 
650 1 4 |a Discrete Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Probability Theory. 
650 2 4 |a Formal Languages and Automata Theory. 
700 1 |a Lovász, László.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ruzsa, Imre.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sós, Vera T.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642392856 
776 0 8 |i Printed edition:  |z 9783642392870 
830 0 |a Bolyai Society Mathematical Studies,  |x 2947-9460 ;  |v 25 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-39286-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)