Hyperbolic Conservation Laws and Related Analysis with Applications Edinburgh, September 2011 /
This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid cry...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2014.
|
Edición: | 1st ed. 2014. |
Colección: | Springer Proceedings in Mathematics & Statistics,
49 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Preface by G.-Q. Chen, H. Holden, K. H. Karlsen
- B. Andreianov: Semigroup Approach for Conservation Laws with Discontinuous Flux
- F. Betancourt, R. Bürger, R. Ruiz-Baier, H.Torres, C. A. Vega: On Numerical Methods for Hyperbolic Conservation Laws and Related Equations Modeling Sedimentation of Solid-liquid suspensions
- L. Caravenna: SBV Regularity Results for Solutions to 1D Conservation Laws
- N. Chemetov, W. Neves: Generalized Buckley-Leverett System. - G.-Q. Chen, M. Slemrod, D. Wang: Entropy, Elasticity, and the Isometric Embedding Problem: M^3\to\R^6
- G.-Q. Chen, W. Xiang: Existence and Stability of Global Solutions of Shock Diffraction Wedges for Potential Flow
- G. M. Coclite, L. di Ruvo, K. H. Karlsen: Some Wellposedness results for the Ostrovsky-Hunter Equation
- M. Ding, Ya. Li: An Overview for Piston Problems in Fluid Dynamics
- D. Donatelli, P. Marcati: Quasineutral Limit for the Navier-Stokes-Fourier-Poisson System
- H. Frid: Divergence-Measure Fields on Domains with Lipschitz Boundary
- T. Karper, A. Mellet, K. Trivisa: On Strong Local Alignment in the Kinetic Cucker-Smale Model
- D. Serre: Multi-Dimensional Systems of Conservation Laws. An Introductory Lecture
- B. Stevens: The Nash-Moser Iteration Technique with Application to Characteristic Free-Boundary Problems.