Cargando…

Random Matrices and Iterated Random Functions Münster, October 2011 /

Random Matrices are one of the major research areas in modern probability theory, due to their prominence in many different fields such as nuclear physics, statistics, telecommunication, free probability, non-commutative geometry, and dynamical systems. A great deal of recent work has focused on the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Alsmeyer, Gerold (Editor ), Löwe, Matthias (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Springer Proceedings in Mathematics & Statistics, 53
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-38806-4
003 DE-He213
005 20220116133220.0
007 cr nn 008mamaa
008 130827s2013 gw | s |||| 0|eng d
020 |a 9783642388064  |9 978-3-642-38806-4 
024 7 |a 10.1007/978-3-642-38806-4  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
245 1 0 |a Random Matrices and Iterated Random Functions  |h [electronic resource] :  |b Münster, October 2011 /  |c edited by Gerold Alsmeyer, Matthias Löwe. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 265 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1017 ;  |v 53 
505 0 |a E. Le Page: Tails of a stationary probability measure for an affine stochastic recursion on the line -- Yv. Guivarc'h: On homogeneity at infinity of stationary measures for affine stochastic recursions -- M. Stolz: Limit theorems for random elements of the compact classical groups -- T. Kriecherbauer: Universality of local eigenvalue statistics -- R. Speicher: Asymptotic eigenvalue distribution of random matrices and free stochastic analysis -- M. Peigné: Conditioned random walk in Weyl chambers and renewal theory in a cone -- D. Buraczewski: The linear stochastic equation R =_d \sum_{ i=1}^N A_iR_i + B in the critical case -- J. Collamore: Tail estimates for stochastic fixed point equations -- S. Mentemeier: On multivariate random difference equations -- M. Olvera-Cravioto: Tail asymptotics for solutions of stochastic fixed point equations on trees -- E. Damek: On fixed points of generalized multidimensional affine recursions -- G. Alsmeyer: The functional equation of the smoothing transform.- O. Friesen, M. Löwe: Limit theorems for the eigenvalues of random matrices with weakly correlated entries. . 
520 |a Random Matrices are one of the major research areas in modern probability theory, due to their prominence in many different fields such as nuclear physics, statistics, telecommunication, free probability, non-commutative geometry, and dynamical systems. A great deal of recent work has focused on the study of spectra of large random matrices on the one hand and on iterated random functions, especially random difference equations, on the other. However, the methods applied in these two research areas are fairly dissimilar. Motivated by the idea that tools from one area could potentially also be helpful in the other, the volume editors have selected contributions that present results and methods from random matrix theory as well as from the theory of iterated random functions. This work resulted from a workshop that was held in Münster, Germany in 2011. The aim of the workshop was to bring together researchers from two fields of probability theory: random matrix theory and the theory of iterated random functions. Random matrices play fundamental, yet very different roles in the two fields. Accordingly, leading figures and young researchers gave talks on their field of interest that were also accessible to a broad audience. 
650 0 |a Probabilities. 
650 0 |a Functional analysis. 
650 1 4 |a Probability Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Alsmeyer, Gerold.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Löwe, Matthias.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642431227 
776 0 8 |i Printed edition:  |z 9783642388057 
776 0 8 |i Printed edition:  |z 9783642388071 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1017 ;  |v 53 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-38806-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)