Cargando…

Fluctuations of Lévy Processes with Applications Introductory Lectures /

Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kyprianou, Andreas E. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edición:2nd ed. 2014.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-37632-0
003 DE-He213
005 20220116120108.0
007 cr nn 008mamaa
008 140109s2014 gw | s |||| 0|eng d
020 |a 9783642376320  |9 978-3-642-37632-0 
024 7 |a 10.1007/978-3-642-37632-0  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Kyprianou, Andreas E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fluctuations of Lévy Processes with Applications  |h [electronic resource] :  |b Introductory Lectures /  |c by Andreas E. Kyprianou. 
250 |a 2nd ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XVIII, 455 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Lévy Processes and Applications -- The Lévy-Itô Decomposition and Path Structure -- More Distributional and Path-Related Properties -- General Storage Models and Paths of Bounded Variation -- Subordinators at First Passage and Renewal Measures -- The Wiener-Hopf Factorisation -- Lévy Processes at First Passage -- Exit Problems for Spectrally Negative Processes -- More on Scale Functions -- Ruin Problems and Gerber-Shiu Theory -- Applications to Optimal Stopping Problems -- Continuous-State Branching Processes -- Positive Self-similar Markov Processes -- Epilogue -- Hints for Exercises -- References -- Index. 
520 |a Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises. Andreas Kyprianou has a degree in Mathematics from the University of Oxford and a Ph.D. in Probability Theory from The University of Sheffield. He is currently a Professor of Probability at the University of Bath, having held academic positions in Mathematics and Statistics Departments at the London School of Economics, Edinburgh University, Utrecht University and Heriot-Watt University, besides working for nearly two years as a research mathematician in the oil industry. His research is focused on pure and applied probability. 
650 0 |a Probabilities. 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642376313 
776 0 8 |i Printed edition:  |z 9783642376337 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-37632-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)