Cargando…

On the Estimation of Multiple Random Integrals and U-Statistics

This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Major, Péter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Mathematics, 2079
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-37617-7
003 DE-He213
005 20220113164740.0
007 cr nn 008mamaa
008 130704s2013 gw | s |||| 0|eng d
020 |a 9783642376177  |9 978-3-642-37617-7 
024 7 |a 10.1007/978-3-642-37617-7  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Major, Péter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a On the Estimation of Multiple Random Integrals and U-Statistics  |h [electronic resource] /  |c by Péter Major. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 288 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2079 
505 0 |a 1 Introduction -- 2 Motivation of the investigation. Discussion of some problems -- 3 Some estimates about sums of independent random variables -- 4 On the supremum of a nice class of partial sums -- 5 Vapnik- Červonenkis classes and L2-dense classes of functions -- 6 The proof of Theorems 4.1 and 4.2 on the supremum of random sums -- 7 The completion of the proof of Theorem 4.1 -- 8 Formulation of the main results of this work -- 9 Some results about U-statistics -- 10 MultipleWiener-Itô integrals and their properties -- 11 The diagram formula for products of degenerate U-statistics -- 12 The proof of the diagram formula for U-statistics -- 13 The proof of Theorems 8.3, 8.5 and Example 8.7 -- 14 Reduction of the main result in this work -- 15 The strategy of the proof for the main result of this work -- 16 A symmetrization argument -- 17 The proof of the main result -- 18 An overview of the results and a discussion of the literature. 
520 |a This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables. This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when standard methods are not a viable option. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642376184 
776 0 8 |i Printed edition:  |z 9783642376160 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2079 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-37617-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)