|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-642-37382-4 |
003 |
DE-He213 |
005 |
20230801073121.0 |
007 |
cr nn 008mamaa |
008 |
130326s2013 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642373824
|9 978-3-642-37382-4
|
024 |
7 |
|
|a 10.1007/978-3-642-37382-4
|2 doi
|
050 |
|
4 |
|a QA76.9.D343
|
072 |
|
7 |
|a UNF
|2 bicssc
|
072 |
|
7 |
|a UYQE
|2 bicssc
|
072 |
|
7 |
|a COM021030
|2 bisacsh
|
072 |
|
7 |
|a UNF
|2 thema
|
072 |
|
7 |
|a UYQE
|2 thema
|
082 |
0 |
4 |
|a 006.312
|2 23
|
245 |
1 |
0 |
|a New Frontiers in Mining Complex Patterns
|h [electronic resource] :
|b First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers /
|c edited by Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew Ras.
|
250 |
|
|
|a 1st ed. 2013.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2013.
|
300 |
|
|
|a X, 231 p. 57 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 7765
|
505 |
0 |
|
|a Learning with Configurable Operators and RL-Based Heuristics.- Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks -- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation -- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules -- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets -- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data -- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution. Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks -- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation -- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules -- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets -- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data -- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution. .
|
520 |
|
|
|a This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2012, held in conjunction with ECML/PKDD 2012, in Bristol, UK, in September 2012. The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on mining rich (relational) datasets, mining complex patterns from miscellaneous data, mining complex patterns from trajectory and sequence data, and mining complex patterns from graphs and networks.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Database management.
|
650 |
|
0 |
|a Information storage and retrieval systems.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
1 |
4 |
|a Data Mining and Knowledge Discovery.
|
650 |
2 |
4 |
|a Database Management.
|
650 |
2 |
4 |
|a Information Storage and Retrieval.
|
650 |
2 |
4 |
|a Artificial Intelligence.
|
700 |
1 |
|
|a Appice, Annalisa.
|e editor.
|0 (orcid)0000-0001-9840-844X
|1 https://orcid.org/0000-0001-9840-844X
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Ceci, Michelangelo.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Loglisci, Corrado.
|e editor.
|0 (orcid)0000-0001-5790-8368
|1 https://orcid.org/0000-0001-5790-8368
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Manco, Giuseppe.
|e editor.
|0 (orcid)0000-0001-9672-3833
|1 https://orcid.org/0000-0001-9672-3833
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Masciari, Elio.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Ras, Zbigniew.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642373831
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642373817
|
830 |
|
0 |
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 7765
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-642-37382-4
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|