Cargando…

Method of Guiding Functions in Problems of Nonlinear Analysis

This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of non...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Obukhovskii, Valeri (Autor), Zecca, Pietro (Autor), Van Loi, Nguyen (Autor), Kornev, Sergei (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Mathematics, 2076
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-37070-0
003 DE-He213
005 20220125055030.0
007 cr nn 008mamaa
008 130514s2013 gw | s |||| 0|eng d
020 |a 9783642370700  |9 978-3-642-37070-0 
024 7 |a 10.1007/978-3-642-37070-0  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Obukhovskii, Valeri.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Method of Guiding Functions in Problems of Nonlinear Analysis  |h [electronic resource] /  |c by Valeri Obukhovskii, Pietro Zecca, Nguyen Van Loi, Sergei Kornev. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 177 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2076 
505 0 |a 1 Background -- 2 MGF in Finite-Dimensional Spaces -- 3 Guiding Functions in Hilbert Spaces.- 4 Second-Order Differential Inclusions.- 5 Nonlinear Fredholm Inclusions. 
520 |a This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for "pure" mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics. 
650 0 |a Mathematics. 
650 0 |a Operator theory. 
650 0 |a Game theory. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Game Theory. 
650 2 4 |a Systems Theory, Control . 
700 1 |a Zecca, Pietro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Van Loi, Nguyen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kornev, Sergei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642370717 
776 0 8 |i Printed edition:  |z 9783642370694 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2076 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-37070-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)