Cargando…

Nonabelian Jacobian of Projective Surfaces Geometry and Representation Theory /

The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its cl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Reider, Igor (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Mathematics, 2072
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-35662-9
003 DE-He213
005 20220116082141.0
007 cr nn 008mamaa
008 130305s2013 gw | s |||| 0|eng d
020 |a 9783642356629  |9 978-3-642-35662-9 
024 7 |a 10.1007/978-3-642-35662-9  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Reider, Igor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonabelian Jacobian of Projective Surfaces  |h [electronic resource] :  |b Geometry and Representation Theory /  |c by Igor Reider. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 227 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2072 
505 0 |a 1 Introduction -- 2 Nonabelian Jacobian J(X; L; d): main properties -- 3 Some properties of the filtration H -- 4 The sheaf of Lie algebras G -- 5 Period maps and Torelli problems -- 6 sl2-structures on F -- 7 sl2-structures on G -- 8 Involution on G -- 9 Stratification of T -- 10 Configurations and theirs equations -- 11 Representation theoretic constructions -- 12 J(X; L; d) and the Langlands Duality. 
520 |a The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work's main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an efficient tool for using the representation theory to systematically address various algebro-geometric problems. It also shows how to construct new invariants of representation theoretic origin on smooth projective surfaces. 
650 0 |a Algebraic geometry. 
650 0 |a Algebras, Linear. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Linear Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642356612 
776 0 8 |i Printed edition:  |z 9783642356636 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2072 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-35662-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)