Cargando…

A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications

The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of obje...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Viattchenin, Dmitri A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Studies in Fuzziness and Soft Computing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-35536-3
003 DE-He213
005 20220116033700.0
007 cr nn 008mamaa
008 130418s2013 gw | s |||| 0|eng d
020 |a 9783642355363  |9 978-3-642-35536-3 
024 7 |a 10.1007/978-3-642-35536-3  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Viattchenin, Dmitri A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications  |h [electronic resource] /  |c by Dmitri A. Viattchenin. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 227 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 
505 0 |a Introduction -- Heuristic Algorithms of Possibilistic Clustering -- Clustering Approaches for the Uncertain Data -- Applications of the Heuristic Algorithms of Possibilistic Clustering. 
520 |a The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects.   The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover,  a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani's fuzzy inference systems is introduced. This book addresses engineers, scientists, professors, students and post-graduate students, who are interested in and work with fuzzy clustering and its applications. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642443015 
776 0 8 |i Printed edition:  |z 9783642355370 
776 0 8 |i Printed edition:  |z 9783642355356 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-35536-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)