Topological Derivatives in Shape Optimization
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, t...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Novotny, Antonio André (Autor), Sokołowski, Jan (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Edición: | 1st ed. 2013. |
Colección: | Interaction of Mechanics and Mathematics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Numerical Methods for Differential Equations, Optimization, and Technological Problems Dedicated to Professor P. Neittaanmäki on His 60th Birthday /
Publicado: (2013) -
Finite Elements Methods in Mechanics
por: Eslami, M. Reza
Publicado: (2014) -
Recent Advances in Radial Basis Function Collocation Methods
por: Chen, Wen, et al.
Publicado: (2014) -
Numerical Simulations of Coupled Problems in Engineering
Publicado: (2014) -
Computational Methods for Solids and Fluids Multiscale Analysis, Probability Aspects and Model Reduction /
Publicado: (2016)