Cargando…

Non-fickian Solute Transport in Porous Media A Mechanistic and Stochastic Theory /

The advection-dispersion equation that is used to model the solute transport in a porous medium is based on the premise that the fluctuating components of the flow velocity, hence the fluxes, due to a porous matrix can be assumed to obey a relationship similar to Fick's law. This introduces phe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kulasiri, Don (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Advances in Geophysical and Environmental Mechanics and Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-34985-0
003 DE-He213
005 20220120071332.0
007 cr nn 008mamaa
008 130420s2013 gw | s |||| 0|eng d
020 |a 9783642349850  |9 978-3-642-34985-0 
024 7 |a 10.1007/978-3-642-34985-0  |2 doi 
050 4 |a QC801-809 
072 7 |a PHVG  |2 bicssc 
072 7 |a SCI032000  |2 bisacsh 
072 7 |a PHVG  |2 thema 
082 0 4 |a 550  |2 23 
100 1 |a Kulasiri, Don.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Non-fickian Solute Transport in Porous Media  |h [electronic resource] :  |b A Mechanistic and Stochastic Theory /  |c by Don Kulasiri. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a IX, 227 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Geophysical and Environmental Mechanics and Mathematics,  |x 1866-8356 
505 0 |a NonFickian Solute Transport -- Stochastic Differential Equations and Related Inverse Problems -- A Stochastic Model for Hydrodynamic Dispersion -- A Generalized Mathematical Model in One-dimension -- Theories of Fluctuations and Dissipation -- Multiscale, Generalised Stochastic Solute Transport Model in One Dimension -- The Stochastic Solute Transport Model in 2-Dimensions -- Multiscale Dispersion in 2 dimensions. 
520 |a The advection-dispersion equation that is used to model the solute transport in a porous medium is based on the premise that the fluctuating components of the flow velocity, hence the fluxes, due to a porous matrix can be assumed to obey a relationship similar to Fick's law. This introduces phenomenological coefficients which are dependent on the scale of the experiments. This book presents an approach, based on sound theories of stochastic calculus and differential equations, which removes this basic premise. This leads to a multiscale theory with scale independent coefficients. This book illustrates this outcome with available data at different scales, from experimental laboratory scales to regional scales. 
650 0 |a Geophysics. 
650 0 |a Continuum mechanics. 
650 0 |a Mathematical models. 
650 1 4 |a Geophysics. 
650 2 4 |a Continuum Mechanics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642431142 
776 0 8 |i Printed edition:  |z 9783642349867 
776 0 8 |i Printed edition:  |z 9783642349843 
830 0 |a Advances in Geophysical and Environmental Mechanics and Mathematics,  |x 1866-8356 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-34985-0  |z Texto Completo 
912 |a ZDB-2-EES 
912 |a ZDB-2-SXEE 
950 |a Earth and Environmental Science (SpringerNature-11646) 
950 |a Earth and Environmental Science (R0) (SpringerNature-43711)