Cargando…

Interest Rate Derivatives Valuation, Calibration and Sensitivity Analysis /

The class of interest rate models introduced by O. Cheyette in 1994 is a subclass of the general HJM framework with a time dependent volatility parameterization. This book addresses the above mentioned class of interest rate models and concentrates on the calibration, valuation and sensitivity analy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Beyna, Ingo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Economics and Mathematical Systems,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-34925-6
003 DE-He213
005 20230810210733.0
007 cr nn 008mamaa
008 130220s2013 gw | s |||| 0|eng d
020 |a 9783642349256  |9 978-3-642-34925-6 
024 7 |a 10.1007/978-3-642-34925-6  |2 doi 
050 4 |a H61.25 
072 7 |a PBW  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
072 7 |a K  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Beyna, Ingo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Interest Rate Derivatives  |h [electronic resource] :  |b Valuation, Calibration and Sensitivity Analysis /  |c by Ingo Beyna. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 209 p. 33 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Economics and Mathematical Systems,  |x 2196-9957 
505 0 |a Preface -- 1.Literature Review -- 2.The Cheyette Model Class -- 3.Analytical Pricing Formulas -- 4.Calibration -- 5.Monte Carlo Methods -- 6.Characteristic Function Method -- 7.PDE Valuation -- 8.Comparison of Valuation Techniques for Interest Rate Derivatives -- 9.Greeks -- 10.Conclusion.-Appendices: A.Additional Calculus in the Class of Cheyette Models -- B.Mathematical Tools -- C.Market Data -- References -- Index. 
520 |a The class of interest rate models introduced by O. Cheyette in 1994 is a subclass of the general HJM framework with a time dependent volatility parameterization. This book addresses the above mentioned class of interest rate models and concentrates on the calibration, valuation and sensitivity analysis in multifactor models. It derives analytical pricing formulas for bonds and caplets and applies several numerical valuation techniques in the class of Cheyette model, i.e. Monte Carlo simulation, characteristic functions and PDE valuation based on sparse grids. Finally it focuses on the sensitivity analysis of Cheyette models and derives Model- and Market Greeks. To the best of our knowledge, this sensitivity analysis of interest rate derivatives in the class of Cheyette models is unique in the literature. Up to now the valuation of interest rate derivatives using PDEs has been restricted to 3 dimensions only, since the computational effort was too great. The author picks up the sparse grid technique, adjusts it slightly and can solve high-dimensional PDEs (four dimensions plus time) accurately in reasonable time. Many topics investigated in this book  are new areas of research and make a significant contribution to the scientific community of financial engineers. They also represent a valuable development for practitioners. 
650 0 |a Social sciences  |x Mathematics. 
650 0 |a Mathematics. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642349263 
776 0 8 |i Printed edition:  |z 9783642349249 
830 0 |a Lecture Notes in Economics and Mathematical Systems,  |x 2196-9957 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-34925-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)