Cargando…

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems Design, Analysis and Matlab Simulation /

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design metho...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Jinkun (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-34816-7
003 DE-He213
005 20220119124039.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 |a 9783642348167  |9 978-3-642-34816-7 
024 7 |a 10.1007/978-3-642-34816-7  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Liu, Jinkun.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Radial Basis Function (RBF) Neural Network Control for Mechanical Systems  |h [electronic resource] :  |b Design, Analysis and Matlab Simulation /  |c by Jinkun Liu. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XV, 365 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- RBF Neural Network Design and Simulation -- RBF Neural Network Control Based on Gradient Descent Algorithm -- Adaptive RBF Neural Network Control -- Neural Network Sliding Mode Control -- Adaptive RBF Control Based on Global Approximation -- Adaptive Robust RBF Control Based on Local Approximation -- Backstepping Control with RBF -- Digital RBF Neural Network Control -- Discrete Neural Network Control -- Adaptive RBF Observer Design and Sliding Mode Control. 
520 |a Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics. 
650 0 |a Control engineering. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 0 |a Computational intelligence. 
650 0 |a Neural networks (Computer science) . 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642348174 
776 0 8 |i Printed edition:  |z 9783642434556 
776 0 8 |i Printed edition:  |z 9783642348150 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-34816-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)