Cargando…

Machine Learning and Interpretation in Neuroimaging International Workshop, MLINI 2011, Held at NIPS 2011, Sierra Nevada, Spain, December 16-17, 2011, Revised Selected and Invited Contributions /

Brain imaging brings together the technology, methodology, research questions and approaches of a wide range of scientific fields including physics, statistics, computer science, neuroscience, biology, and engineering. Thus, methodological and technological advances that enable us to obtain measurem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Langs, Georg (Editor ), Rish, Irina (Editor ), Grosse-Wentrup, Moritz (Editor ), Murphy, Brian (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Artificial Intelligence, 7263
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-34713-9
003 DE-He213
005 20221012192212.0
007 cr nn 008mamaa
008 121116s2012 gw | s |||| 0|eng d
020 |a 9783642347139  |9 978-3-642-34713-9 
024 7 |a 10.1007/978-3-642-34713-9  |2 doi 
050 4 |a TA1501-1820 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYT  |2 thema 
082 0 4 |a 006  |2 23 
245 1 0 |a Machine Learning and Interpretation in Neuroimaging  |h [electronic resource] :  |b International Workshop, MLINI 2011, Held at NIPS 2011, Sierra Nevada, Spain, December 16-17, 2011, Revised Selected and Invited Contributions /  |c edited by Georg Langs, Irina Rish, Moritz Grosse-Wentrup, Brian Murphy. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XIV, 266 p. 83 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 7263 
505 0 |a A Comparative Study of Algorithms for Intra- and Inter-subjects fMRI Decoding -- Beyond Brain Reading: Randomized Sparsity and Clustering to Simultaneously Predict and Identify -- Searchlight Based Feature Extraction -- Looking Outside the Searchlight -- Population Codes Representing Musical Timbre for High-Level fMRI Categorization of Music Genres -- Induction in Neuroscience with Classification: Issues and Solutions -- A New Feature Selection Method Based on Stability Theory - Exploring Parameters Space to Evaluate Classification Accuracy in Neuroimaging Data -- Identification of OCD-Relevant Brain Areas through Multivariate Feature Selection -- Deformation-Invariant Sparse Coding for Modeling Spatial Variability of Functional Patterns in the Brain -- Decoding Complex Cognitive States Online by Manifold Regularization in Real-Time fMRI -- Modality Neutral Techniques for Brain Image Understanding -- How Does the Brain Represent Visual Scenes? A Neuromagnetic Scene Categorization Study -- Finding Consistencies in MEG Responses to Repeated Natural Speech -- Categorized EEG Neurofeedback Performance Unveils Simultaneous fMRI Deep Brain Activation -- Predicting Clinically Definite Multiple Sclerosis from Onset Using SVM -- MKL-Based Sample Enrichment and Customized Outcomes Enable Smaller AD Clinical Trials -- Pairwise Analysis for Longitudinal fMRI Studies -- Non-separable Spatiotemporal Brain Hemodynamics Contain Neural Information -- The Dynamic Beamformer -- Covert Attention as a Paradigm for Subject-Independent Brain-Computer Interfacing -- The Neural Dynamics of Visual Processing in Monkey Extrastriate Cortex: A Comparison between Univariate and Multivariate Techniques -- Statistical Learning for Resting-State fMRI: Successes and Challenges -- Relating Brain Functional Connectivity to Anatomical Connections: Model Selection -- Information-Theoretic Connectivity-Based Cortex Parcellation -- Inferring Brain Networks through Graphical Models with Hidden Variables -- Pitfalls in EEG-Based Brain Effective Connectivity Analysis -- Data-Driven Modeling of BOLD Drug Response Curves Using Gaussian Process Learning -- Variational Bayesian Learning of Sparse Representations and Its Application in Functional Neuroimaging -- Identification of Functional Clusters in the Striatum Using Infinite Relational Modeling -- A Latent Feature Analysis of the Neural Representation of Conceptual Knowledge -- Real-Time Functional MRI Classification of Brain States Using Markov-SVM Hybrid Models: Peering Inside the rt-fMRI Black Box -- Restoring the Generalizability of SVM Based Decoding in High Dimensional Neuroimage Data. 
520 |a Brain imaging brings together the technology, methodology, research questions and approaches of a wide range of scientific fields including physics, statistics, computer science, neuroscience, biology, and engineering. Thus, methodological and technological advances that enable us to obtain measurements, examine relationships across observations, and link these data to neuroscientific hypotheses happen in a highly interdisciplinary environment. The dynamic field of machine learning with its modern approach to data mining provides many relevant approaches for neuroscience and enables the exploration of open questions. This state-of-the-art survey offers a collection of papers from the Workshop on Machine Learning and Interpretation in Neuroimaging, MLINI 2011, held at the 25th Annual Conference on Neural Information Processing, NIPS 2011, in the Sierra Nevada, Spain, in December 2011. Additionally, invited speakers agreed to contribute reviews on various aspects of the field, adding breadth and perspective to the volume. The 32 revised papers were carefully selected from 48 submissions. At the interface between machine learning and neuroimaging the papers aim at shedding some light on the state of the art in this interdisciplinary field. They are organized in topical sections on coding and decoding, neuroscience, dynamcis, connectivity, and probabilistic models and machine learning. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 0 |a Data mining. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Application software. 
650 1 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Computer Vision. 
650 2 4 |a Computer and Information Systems Applications. 
700 1 |a Langs, Georg.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rish, Irina.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Grosse-Wentrup, Moritz.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Murphy, Brian.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642347146 
776 0 8 |i Printed edition:  |z 9783642347122 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 7263 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-34713-9  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)