Cargando…

Predictive Approaches to Control of Complex Systems

A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Karer, Gorazd (Autor), Škrjanc, Igor (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Studies in Computational Intelligence, 454
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-33947-9
003 DE-He213
005 20220119010209.0
007 cr nn 008mamaa
008 120920s2013 gw | s |||| 0|eng d
020 |a 9783642339479  |9 978-3-642-33947-9 
024 7 |a 10.1007/978-3-642-33947-9  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Karer, Gorazd.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Predictive Approaches to Control of Complex Systems  |h [electronic resource] /  |c by Gorazd Karer, Igor Škrjanc. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 260 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 454 
505 0 |a Introduction -- Modeling of complex systems for predictive control -- Modeling an identification of a batch reactor -- Predictive control of complex systems -- Predictive control of complex systems. 
520 |a A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequently encountered complex dynamical phenomena and are practically applicable in the proposed predictive control approaches. Furthermore, unsupervised learning methods that can be used for complex-system identification are treated. Finally, several useful predictive control algorithms for complex systems are proposed and their particular advantages and drawbacks are discussed. The presented modeling, identification and control approaches are complemented by illustrative examples. The book is aimed towards researches and postgraduate students interested in modeling, identification and control, as well as towards control engineers needing practically usable advanced control methods for complex systems. 
650 0 |a Control engineering. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Applied Dynamical Systems. 
650 2 4 |a Systems Theory, Control . 
700 1 |a Škrjanc, Igor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642339486 
776 0 8 |i Printed edition:  |z 9783642439773 
776 0 8 |i Printed edition:  |z 9783642339462 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 454 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-33947-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)