Cargando…

Mathematical Risk Analysis Dependence, Risk Bounds, Optimal Allocations and Portfolios /

The author's particular interest in the area of risk measures is to combine this theory with the analysis of dependence properties. The present volume gives an introduction of basic concepts and methods in mathematical risk analysis, in particular of those parts of risk theory that are of speci...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rüschendorf, Ludger (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Springer Series in Operations Research and Financial Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-33590-7
003 DE-He213
005 20220126132903.0
007 cr nn 008mamaa
008 130321s2013 gw | s |||| 0|eng d
020 |a 9783642335907  |9 978-3-642-33590-7 
024 7 |a 10.1007/978-3-642-33590-7  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Rüschendorf, Ludger.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Risk Analysis  |h [electronic resource] :  |b Dependence, Risk Bounds, Optimal Allocations and Portfolios /  |c by Ludger Rüschendorf. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 408 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Operations Research and Financial Engineering,  |x 2197-1773 
505 0 |a Preface.-Part I: Stochastic Dependence and Extremal Risk.-1 Copulas, Sklar's Theorem, and Distributional Transform -- 2 Fréchet Classes, Risk Bounds, and Duality Theory -- 3 Convex Order, Excess of Loss, and Comonotonicity -- 4 Bounds for the Distribution Function and Value at Risk of the Joint Portfolio -- 5 Restrictions on the Dependence Structure -- 6 Dependence Orderings of Risk Vectors and Portfolios -- Part II: Risk Measures and Worst Case Portfolios -- 7 Risk Measures for Real Risks -- 8 Risk Measures for Portfolio Vectors -- 9 Law Invariant Convex Risk Measures on L_d^p and Optimal Mass Transportation -- Part III: Optimal Risk Allocation -- 10 Optimal Allocations and Pareto Equilibrium -- 11 Characterization and Examples of Optimal Risk Allocations for Convex Risk Functionals -- 12 Optimal Contingent Claims and (Re)Insurance Contracts -- Part IV: Optimal Portfolios and Extreme Risks -- 13 Optimal Portfolio Diversification w.r.t. Extreme Risks -- 14 Ordering of Multivariate Risk Models with Respect to Extreme Portfolio Losses -- References -- List of Symbols -- Index. 
520 |a The author's particular interest in the area of risk measures is to combine this theory with the analysis of dependence properties. The present volume gives an introduction of basic concepts and methods in mathematical risk analysis, in particular of those parts of risk theory that are of special relevance to finance and insurance. Describing the influence of dependence in multivariate stochastic models on risk vectors is the main focus of the text that presents main ideas and methods as well as their relevance to practical applications. The first part introduces basic probabilistic tools and methods of distributional analysis, and describes their use to the modeling of dependence and to the derivation of risk bounds in these models. In the second, part risk measures with a particular focus on those in the financial and insurance context are presented. The final parts are then devoted to applications relevant to optimal risk allocation, optimal portfolio problems as well as to the optimization of insurance contracts. Good knowledge of basic probability and statistics as well as of basic general mathematics is a prerequisite for comfortably reading and working with the present volume, which is intended for graduate students, practitioners and researchers and can serve as a reference resource for the main concepts and techniques.  . 
650 0 |a Probabilities. 
650 0 |a Social sciences-Mathematics. 
650 0 |a Actuarial science. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Actuarial Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642335914 
776 0 8 |i Printed edition:  |z 9783642335891 
776 0 8 |i Printed edition:  |z 9783642430169 
830 0 |a Springer Series in Operations Research and Financial Engineering,  |x 2197-1773 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-33590-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)