Understanding High-Dimensional Spaces
High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to wo...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2012.
|
Edición: | 1st ed. 2012. |
Colección: | SpringerBriefs in Computer Science,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction
- Basic Structure of High-Dimensional Spaces
- Algorithms
- Spaces with a Single Center
- Spaces with Multiple Clusters
- Representation by Graphs
- Using Models of High-Dimensional Spaces
- Including Contextual Information
- Conclusions
- Index
- References.