Cargando…

Understanding High-Dimensional Spaces

High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to wo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Skillicorn, David B. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-33398-9
003 DE-He213
005 20220115213013.0
007 cr nn 008mamaa
008 120928s2012 gw | s |||| 0|eng d
020 |a 9783642333989  |9 978-3-642-33398-9 
024 7 |a 10.1007/978-3-642-33398-9  |2 doi 
050 4 |a TK5105.5-5105.9 
072 7 |a UKN  |2 bicssc 
072 7 |a COM069000  |2 bisacsh 
072 7 |a UKN  |2 thema 
082 0 4 |a 004.6  |2 23 
100 1 |a Skillicorn, David B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Understanding High-Dimensional Spaces  |h [electronic resource] /  |c by David B. Skillicorn. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a IX, 108 p. 29 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Basic Structure of High-Dimensional Spaces -- Algorithms -- Spaces with a Single Center -- Spaces with Multiple Clusters -- Representation by Graphs -- Using Models of High-Dimensional Spaces -- Including Contextual Information -- Conclusions -- Index -- References. 
520 |a High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets are large and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. The book will be of value to practitioners, graduate students and researchers. 
650 0 |a Computer networks . 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Artificial intelligence. 
650 0 |a Data protection. 
650 0 |a Electronic commerce. 
650 1 4 |a Computer Communication Networks. 
650 2 4 |a Data Structures and Information Theory. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data and Information Security. 
650 2 4 |a e-Commerce and e-Business. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642333996 
776 0 8 |i Printed edition:  |z 9783642333972 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-33398-9  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)