Cargando…

Investment Strategies Optimization based on a SAX-GA Methodology

This book presents a new computational finance approach combining a Symbolic Aggregate approXimation (SAX) technique with an optimization kernel based on genetic algorithms (GA). While the SAX representation is used to describe the financial time series, the evolutionary optimization kernel is used...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Canelas, António M.L (Autor), Neves, Rui F.M.F (Autor), Horta, Nuno C.G (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Computational Intelligence,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-33110-7
003 DE-He213
005 20220113151511.0
007 cr nn 008mamaa
008 120928s2013 gw | s |||| 0|eng d
020 |a 9783642331107  |9 978-3-642-33110-7 
024 7 |a 10.1007/978-3-642-33110-7  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Canelas, António M.L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Investment Strategies Optimization based on a SAX-GA Methodology  |h [electronic resource] /  |c by António M.L. Canelas, Rui F.M.F. Neves, Nuno C.G. Horta. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 81 p. 81 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computational Intelligence,  |x 2625-3712 
505 0 |a Introduction -- Market Analysis Background and Related Work -- SAX-GA Approach -- Results -- Conclusions and Future Work. 
520 |a This book presents a new computational finance approach combining a Symbolic Aggregate approXimation (SAX) technique with an optimization kernel based on genetic algorithms (GA). While the SAX representation is used to describe the financial time series, the evolutionary optimization kernel is used in order to identify the most relevant patterns and generate investment rules. The proposed approach considers several different chromosomes structures in order to achieve better results on the trading platform The methodology presented in this book has great potential on investment markets. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Macroeconomics. 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Macroeconomics and Monetary Economics. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
700 1 |a Neves, Rui F.M.F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Horta, Nuno C.G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642331114 
776 0 8 |i Printed edition:  |z 9783642331091 
830 0 |a SpringerBriefs in Computational Intelligence,  |x 2625-3712 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-33110-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)