Cargando…

Statistical Approach to Quantum Field Theory An Introduction /

Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new ave...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wipf, Andreas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Physics, 864
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-33105-3
003 DE-He213
005 20220115214718.0
007 cr nn 008mamaa
008 140221s2013 gw | s |||| 0|eng d
020 |a 9783642331053  |9 978-3-642-33105-3 
024 7 |a 10.1007/978-3-642-33105-3  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Wipf, Andreas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Approach to Quantum Field Theory  |h [electronic resource] :  |b An Introduction /  |c by Andreas Wipf. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 390 p. 133 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 864 
505 0 |a Introduction -- Path Integrals in Quantum and Statistical Mechanics -- High-Dimensional Integrals -- Monte-Carlo Simulations in Quantum Mechanics -- Scalar Fields at Zero and Finite Temperature -- Classical Spin Models: An Introduction -- Mean Field Approximation -- Transfer Matrices, Correlation Inequalities and Roots of Partition Functions -- High-Temperature and Low-Temperature Expansions -- Peierls Argument and Duality Transformations -- Renormalization Group on the Lattice -- Functional Renormalization Group -- Lattice Gauge Theories -- Two-dimensional Lattice Gauge Theories and Group Integrals -- Fermions on a Lattice -- Index. 
520 |a Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an "experimental" tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems with discrete and continuous spins, where the ubiquitous Ising model serves as an ideal guide for introducing the fascinating area of phase transitions. As an alternative to the lattice formulation of quantum field theories, variants of the flexible renormalization group methods are discussed in detail. Since, according to our present-day knowledge, all fundamental interactions in nature are described by gauge theories, the remaining chapters of the book deal with gauge theories without and with matter. This text is based on course-tested notes for graduate students and, as such, its style is essentially pedagogical, requiring only some basics of mathematics, statistical physics, and quantum field theory. Yet it also contains some more sophisticated concepts which may be useful to researchers in the field. Each chapter ends with a number of problems - guiding the reader to a deeper understanding of some of the material presented in the main text - and, in most cases, also features some listings of short, useful computer programs. 
650 0 |a Mathematical physics. 
650 0 |a System theory. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Mathematical Methods in Physics. 
650 2 4 |a Complex Systems. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642331060 
776 0 8 |i Printed edition:  |z 9783642331046 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 864 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-33105-3  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)