Cargando…

Unsupervised Classification Similarity Measures, Classical and Metaheuristic Approaches, and Applications /

Clustering is an important unsupervised classification technique where data points are grouped such that points that are similar in some sense belong to the same cluster. Cluster analysis is a complex problem as a variety of similarity and dissimilarity measures exist in the literature. This is the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bandyopadhyay, Sanghamitra (Autor), Saha, Sriparna (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-32451-2
003 DE-He213
005 20220119042605.0
007 cr nn 008mamaa
008 121212s2013 gw | s |||| 0|eng d
020 |a 9783642324512  |9 978-3-642-32451-2 
024 7 |a 10.1007/978-3-642-32451-2  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Bandyopadhyay, Sanghamitra.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Unsupervised Classification  |h [electronic resource] :  |b Similarity Measures, Classical and Metaheuristic Approaches, and Applications /  |c by Sanghamitra Bandyopadhyay, Sriparna Saha. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 262 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chap. 1 Introduction -- Chap. 2 Some Single- and Multiobjective Optimization Techniques -- Chap. 3 SimilarityMeasures -- Chap. 4 Clustering Algorithms -- Chap. 5 Point Symmetry Based Distance Measures and their Applications to Clustering -- Chap. 6 A Validity Index Based on Symmetry: Application to Satellite Image Segmentation -- Chap. 7 Symmetry Based Automatic Clustering -- Chap. 8 Some Line Symmetry Distance Based Clustering Techniques -- Chap. 9 Use of Multiobjective Optimization for Data Clustering -- References -- Index. 
520 |a Clustering is an important unsupervised classification technique where data points are grouped such that points that are similar in some sense belong to the same cluster. Cluster analysis is a complex problem as a variety of similarity and dissimilarity measures exist in the literature. This is the first book focused on clustering with a particular emphasis on symmetry-based measures of similarity and metaheuristic approaches. The aim is to find a suitable grouping of the input data set so that some criteria are optimized, and using this the authors frame the clustering problem as an optimization one where the objectives to be optimized may represent different characteristics such as compactness, symmetrical compactness, separation between clusters, or connectivity within a cluster. They explain the techniques in detail and outline many detailed applications in data mining, remote sensing and brain imaging, gene expression data analysis, and face detection. The book will be useful to graduate students and researchers in computer science, electrical engineering, system science, and information technology, both as a text and as a reference book. It will also be useful to researchers and practitioners in industry working on pattern recognition, data mining, soft computing, metaheuristics, bioinformatics, remote sensing, and brain imaging. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 0 |a Computer networks . 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Computational and Systems Biology. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Saha, Sriparna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642324505 
776 0 8 |i Printed edition:  |z 9783642324529 
776 0 8 |i Printed edition:  |z 9783642428364 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-32451-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)