Cargando…

Factoring Ideals in Integral Domains

This volume provides a wide-ranging survey of, and many new results on, various important types of ideal factorization actively investigated by several authors in recent years.  Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Fontana, Marco (Autor), Houston, Evan (Autor), Lucas, Thomas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes of the Unione Matematica Italiana, 14
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-31712-5
003 DE-He213
005 20220118182437.0
007 cr nn 008mamaa
008 120914s2013 gw | s |||| 0|eng d
020 |a 9783642317125  |9 978-3-642-31712-5 
024 7 |a 10.1007/978-3-642-31712-5  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Fontana, Marco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Factoring Ideals in Integral Domains  |h [electronic resource] /  |c by Marco Fontana, Evan Houston, Thomas Lucas. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 14 
520 |a This volume provides a wide-ranging survey of, and many new results on, various important types of ideal factorization actively investigated by several authors in recent years.  Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be factored as the product of its divisorial closure and a product of maximal ideals and (2) those with pseudo-Dedekind factorization, in which each nonzero, noninvertible ideal can be factored as the product of an invertible ideal with a product of pairwise comaximal prime ideals.  Prüfer domains play a central role in our study, but many non-Prüfer examples are considered as well. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Algebra. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Houston, Evan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Lucas, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642317118 
776 0 8 |i Printed edition:  |z 9783642317132 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 14 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-31712-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)