Cargando…

Introduction to Stokes Structures

This research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sabbah, Claude (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Mathematics, 2060
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-31695-1
003 DE-He213
005 20220118172214.0
007 cr nn 008mamaa
008 121009s2013 gw | s |||| 0|eng d
020 |a 9783642316951  |9 978-3-642-31695-1 
024 7 |a 10.1007/978-3-642-31695-1  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Sabbah, Claude.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Stokes Structures  |h [electronic resource] /  |c by Claude Sabbah. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 249 p. 14 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2060 
520 |a This research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf. This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed. 
650 0 |a Algebraic geometry. 
650 0 |a Differential equations. 
650 0 |a Approximation theory. 
650 0 |a Sequences (Mathematics). 
650 0 |a Functions of complex variables. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Differential Equations. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642316944 
776 0 8 |i Printed edition:  |z 9783642316968 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2060 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-31695-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)