Cargando…

Diffeomorphisms of Elliptic 3-Manifolds

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) S...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hong, Sungbok (Autor), Kalliongis, John (Autor), McCullough, Darryl (Autor), Rubinstein, J. Hyam (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Mathematics, 2055
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-31564-0
003 DE-He213
005 20220116164718.0
007 cr nn 008mamaa
008 120828s2012 gw | s |||| 0|eng d
020 |a 9783642315640  |9 978-3-642-31564-0 
024 7 |a 10.1007/978-3-642-31564-0  |2 doi 
050 4 |a QA613-613.8 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514.34  |2 23 
100 1 |a Hong, Sungbok.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Diffeomorphisms of Elliptic 3-Manifolds  |h [electronic resource] /  |c by Sungbok Hong, John Kalliongis, Darryl McCullough, J. Hyam Rubinstein. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a X, 155 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2055 
505 0 |a 1 Elliptic 3-manifolds and the Smale Conjecture -- 2 Diffeomorphisms and Embeddings of Manifolds -- 3 The Method of Cerf and Palais -- 4 Elliptic 3-manifolds Containing One-sided Klein Bottles -- 5 Lens Spaces. 
520 |a This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included. 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Manifolds and Cell Complexes. 
700 1 |a Kalliongis, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a McCullough, Darryl.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Rubinstein, J. Hyam.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642315657 
776 0 8 |i Printed edition:  |z 9783642315633 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2055 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-31564-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)