Cargando…

Computational Contact Mechanics Geometrically Exact Theory for Arbitrary Shaped Bodies /

This book contains a systematical analysis of geometrical situations  leading to  contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface.  Each contact pair  is inherited with a special coordinate system based on its geometrical properties such as...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Konyukhov, Alexander (Autor), Schweizerhof, Karl (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Applied and Computational Mechanics, 67
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-31531-2
003 DE-He213
005 20220118003042.0
007 cr nn 008mamaa
008 120814s2013 gw | s |||| 0|eng d
020 |a 9783642315312  |9 978-3-642-31531-2 
024 7 |a 10.1007/978-3-642-31531-2  |2 doi 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a SCI096000  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620.105  |2 23 
100 1 |a Konyukhov, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computational Contact Mechanics  |h [electronic resource] :  |b Geometrically Exact Theory for Arbitrary Shaped Bodies /  |c by Alexander Konyukhov, Karl Schweizerhof. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXII, 446 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1860-0816 ;  |v 67 
505 0 |a Differential Geometry of Surfaces and Curves -- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System -- Geometry and Kinematics of Contact -- Weak Formulation of Contact Conditions -- Contact Constraints and Constitutive Equations for Contact Tractions -- Linearization of the Weak Forms - Tangent Matrices in a Covariant Form -- Surface-To-Surface Contact - Various Aspects for Implementations -- Special Case of Implementation - Reduction into 2D Case -- Implementation of Contact Algorithms with High Order FE -- Anisotropic Adhesion-Friction Models - Implementation -- Experimental Validations of the Coupled Anistropi -- Various Aspects of Implementation of the Curve-To-Curve Contact Model -- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch. 
520 |a This book contains a systematical analysis of geometrical situations  leading to  contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface.  Each contact pair  is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system.  The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a  certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others  are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are  then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and  contains the associated  numerical analysis as well as some new analytical results in contact mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Mechanics. 
650 1 4 |a Solid Mechanics. 
650 2 4 |a Engineering Mechanics. 
650 2 4 |a Classical Mechanics. 
700 1 |a Schweizerhof, Karl.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642315329 
776 0 8 |i Printed edition:  |z 9783642445415 
776 0 8 |i Printed edition:  |z 9783642315305 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1860-0816 ;  |v 67 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-31531-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)