Cargando…

Modeling in Computational Biology and Biomedicine A Multidisciplinary Endeavor /

Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cazals, Frédéric (Editor ), Kornprobst, Pierre (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-31208-3
003 DE-He213
005 20220114154153.0
007 cr nn 008mamaa
008 121116s2013 gw | s |||| 0|eng d
020 |a 9783642312083  |9 978-3-642-31208-3 
024 7 |a 10.1007/978-3-642-31208-3  |2 doi 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PBW  |2 bicssc 
072 7 |a PSA  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
245 1 0 |a Modeling in Computational Biology and Biomedicine  |h [electronic resource] :  |b A Multidisciplinary Endeavor /  |c edited by Frédéric Cazals, Pierre Kornprobst. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXVI, 318 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foreword by Olivier Faugeras -- Foreword by Joël Janin -- Preface -- Part I Bioinformatics -- 1.Modeling Macro-molecular Complexes: a Journey Across Scales. F.Cazals, T.Dreyfus, and C.H. Robert -- 1.1.Introduction -- 1.2.Modeling Atomic Resolution -- 1.3.Modeling Large Assemblies -- 1.4.Outlook -- 1.5.Online Resources -- References -- 2.Modeling and Analysis of Gene Regulatory Networks. G.Bernot, J-P.Comet, A.Richard, M.Chaves, J-L.Gouzé, and F.Dayan -- 2.1.Introduction -- 2.2.Continuous and Hybrid Models of Genetic Regulatory Networks -- 2.3.Discrete Models of GRN -- 2.4.Outlook -- 2.5.Online Resources -- 2.6.Acknowledgments -- References -- Part II Biomedical Signal and Image Analysis -- 3.Noninvasive Cardiac Signal Analysis Using Data Decomposition Techniques. V.Zarzoso, O.Meste, P.Comon, D.G.Latcu, and N.Saoudi -- 3.1.Preliminaries and Motivation -- 3.2.T-Wave Alternans Detection via Principal Component Analysis -- 3.3.Atrial Activity Extraction via Independent Component Analysis -- 3.4.Conclusion and Outlook -- 3.5.Online Resources -- References -- 4.Deconvolution and Denoising for Confocal Microscopy. P.Pankajakshan, G.Engler, L.Blanc-Féraud, and J.Zerubia -- 4.1.Introduction -- 4.2.Development of the Auxiliary Computational Lens -- 4.3.Outlook -- 4.4.Selected Online Resources -- References -- 5.Statistical Shape Analysis of Surfaces in Medical Images Applied to the Tetralogy of Fallot Heart. K.McLeod, T.Mansi, M.Sermesant, G.Pongiglione, and X.Pennec -- 5.1.Introduction -- 5.2.Statistical Shape Analysis -- 5.3.Shape Analysis of ToF Data -- 5.4.Conclusion -- 5.5.Online Resources -- References -- 6.From Diffusion MRI to Brain Connectomics. A.Ghosh and R.Deriche -- 6.1.Introduction -- 6.2.A Brief History of NMR and MRI -- 6.3.Nuclear Magnetic Resonance and Diffusion -- 6.4.From Diffusion MRI to Tissue Microstructure -- 6.5.Computational Framework for Processing Diffusion MR Images -- 6.6.Tractography: Inferring the Connectivity -- 6.7.Clinical Applications 6.8.Conclusion -- 6.9.Online Resources -- References -- Part III Modeling in neuroscience -- 7.Single-Trial Analysis of Bioelectromagnetic Signals: The Quest for Hidden Information. M.Clerc, T.Papadopoulo, and C.Bénar -- 7.1.Introduction -- 7.2.Data-driven Approaches: Non-linear Dimensionality Reduction -- 7.3.Model-Driven Approaches: Matching Pursuit and its Extensions -- 7.4.Success Stories -- 7.5.Conclusion -- 7.6.Selected Online Resources -- References -- 8 Spike Train Statistics from Empirical Facts to Theory: The Case of the Retina. B.Cessac and A.Palacios -- 8.1.Introduction -- 8.2.Unraveling the Neural Code in the Retina via Spike Train Statistics Analysis -- 8.3.Spike Train Statistics from a Theoretical Perspective -- 8.4.Using Gibbs Distributions to Analysing Spike Trains Statistics -- 8.5.Conclusion -- 8.6.Outlook -- 8.7.Online Resources -- References -- Biology, Medicine and Biophysics -- Mathematics and Computer Science -- Index. 
520 |a Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines.   Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience. 
650 0 |a Biomathematics. 
650 0 |a Mathematics. 
650 0 |a Bioinformatics. 
650 1 4 |a Mathematical and Computational Biology. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Computational and Systems Biology. 
700 1 |a Cazals, Frédéric.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kornprobst, Pierre.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642312090 
776 0 8 |i Printed edition:  |z 9783642446696 
776 0 8 |i Printed edition:  |z 9783642312076 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-31208-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)