Cargando…

Iterative Methods for Fixed Point Problems in Hilbert Spaces

Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods gener...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cegielski, Andrzej (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Mathematics, 2057
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-30901-4
003 DE-He213
005 20220120062400.0
007 cr nn 008mamaa
008 120913s2013 gw | s |||| 0|eng d
020 |a 9783642309014  |9 978-3-642-30901-4 
024 7 |a 10.1007/978-3-642-30901-4  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Cegielski, Andrzej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Iterative Methods for Fixed Point Problems in Hilbert Spaces  |h [electronic resource] /  |c by Andrzej Cegielski. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 298 p. 61 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2057 
505 0 |a 1 Introduction -- 2 Algorithmic Operators -- 3 Convergence of Iterative Methods -- 4 Algorithmic Projection Operators -- 5 Projection methods. 
520 |a Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems. 
650 0 |a Mathematical optimization. 
650 0 |a Functional analysis. 
650 0 |a Calculus of variations. 
650 0 |a Numerical analysis. 
650 0 |a Operator theory. 
650 1 4 |a Optimization. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Operator Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642309007 
776 0 8 |i Printed edition:  |z 9783642309021 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2057 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-30901-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)