Cargando…

An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists

These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics.  While Abelian discrete symmetries are often imposed in order to control co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ishimori, Hajime (Autor), Kobayashi, Tatsuo (Autor), Ohki, Hiroshi (Autor), Okada, Hiroshi (Autor), Shimizu, Yusuke (Autor), Tanimoto, Morimitsu (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Physics, 858
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-30805-5
003 DE-He213
005 20220116210311.0
007 cr nn 008mamaa
008 120724s2012 gw | s |||| 0|eng d
020 |a 9783642308055  |9 978-3-642-30805-5 
024 7 |a 10.1007/978-3-642-30805-5  |2 doi 
050 4 |a QC793-793.5 
050 4 |a QC174.45-174.52 
072 7 |a PHP  |2 bicssc 
072 7 |a SCI051000  |2 bisacsh 
072 7 |a PHP  |2 thema 
082 0 4 |a 530.14  |2 23 
100 1 |a Ishimori, Hajime.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists  |h [electronic resource] /  |c by Hajime Ishimori, Tatsuo Kobayashi, Hiroshi Ohki, Hiroshi Okada, Yusuke Shimizu, Morimitsu Tanimoto. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 283 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 858 
505 0 |a Introduction -- Basics of Finite Groups -- Subgroups and Decompositions of Multiplets -- Anomalies -- Non-Abelian Discrete Symmetry in Quark/Lepton Flavor Models -- Useful Theorems -- Representations of S4 in Different Bases -- Representations of A4 in Different Bases -- Representations of A5 in Different Bases -- Representations of T1 in Different Bases -- Other Smaller Groups -- References. 
520 |a These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics.  While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model -  non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular.  Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory - e.g. the string theory or compactification via orbifolding - thereby providing a possible bridge between the underlying theory and the corresponding low-energy sector of particle physics.  This text explicitly introduces and studies the group-theoretical aspects of many concrete groups and shows how to derive conjugacy classes, characters, representations, and tensor products for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Mathematical physics. 
650 0 |a Group theory. 
650 1 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Group Theory and Generalizations. 
700 1 |a Kobayashi, Tatsuo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ohki, Hiroshi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Okada, Hiroshi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Shimizu, Yusuke.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tanimoto, Morimitsu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642308062 
776 0 8 |i Printed edition:  |z 9783642308048 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 858 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-30805-5  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)