Cargando…

On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling

A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Salazar, Addisson (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research, 4
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-30752-2
003 DE-He213
005 20220114095214.0
007 cr nn 008mamaa
008 120720s2013 gw | s |||| 0|eng d
020 |a 9783642307522  |9 978-3-642-30752-2 
024 7 |a 10.1007/978-3-642-30752-2  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Salazar, Addisson.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling  |h [electronic resource] /  |c by Addisson Salazar. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXII, 186 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 ;  |v 4 
505 0 |a Introduction -- ICA and ICAMM Methods -- Learning Mixtures of Independent Component Analysers -- Hierarchical Clustering from ICA Mixtures -- Application of ICAMM to Impact-Echo Testing -- Cultural Heritage Applications: Archaeological Ceramics and Building Restoration -- Other Applications: Sequential Dependence Modelling and Data Mining -- Conclusions. 
520 |a A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems. 
650 0 |a Signal processing. 
650 0 |a Pattern recognition systems. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Applied Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642307539 
776 0 8 |i Printed edition:  |z 9783642428753 
776 0 8 |i Printed edition:  |z 9783642307515 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 ;  |v 4 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-30752-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)