Cargando…

Rational Points and Arithmetic of Fundamental Groups Evidence for the Section Conjecture /

The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, it...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stix, Jakob (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Mathematics, 2054
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-30674-7
003 DE-He213
005 20220115005154.0
007 cr nn 008mamaa
008 121026s2013 gw | s |||| 0|eng d
020 |a 9783642306747  |9 978-3-642-30674-7 
024 7 |a 10.1007/978-3-642-30674-7  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Stix, Jakob.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Rational Points and Arithmetic of Fundamental Groups  |h [electronic resource] :  |b Evidence for the Section Conjecture /  |c by Jakob Stix. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XX, 249 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2054 
505 0 |a Part I Foundations of Sections -- 1 Continuous Non-abelian H1 with Profinite Coefficients.-2 The Fundamental Groupoid -- 3 Basic Geometric Operations in Terms of Sections -- 4 The Space of Sections as a Topological Space -- 5 Evaluation of Units -- 6 Cycle Classes in Anabelian Geometry -- 7 Injectivity in the Section Conjecture -- Part II Basic Arithmetic of Sections -- 7 Injectivity in the Section Conjecture -- 8 Reduction of Sections -- 9 The Space of Sections in the Arithmetic Case and the Section Conjecture in Covers -- Part III On the Passage from Local to Global -- 10 Local Obstructions at a p-adic Place -- 11 Brauer-Manin and Descent Obstructions -- 12 Fragments of Non-abelian Tate-Poitou Duality -- Part IV Analogues of the Section Conjecture -- 13 On the Section Conjecture for Torsors -- 14 Nilpotent Sections -- 15 Sections over Finite Fields -- 16 On the Section Conjecture over Local Fields -- 17 Fields of Cohomological Dimension 1 -- 18 Cuspidal Sections and Birational Analogues. 
520 |a The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, its study has revealed interesting arithmetic for curves and opened connections, for example, to the question whether the Brauer-Manin obstruction is the only one against rational points on curves. This monograph begins by laying the foundations for the space of sections of the fundamental group extension of an algebraic variety. Then, arithmetic assumptions on the base field are imposed and the local-to-global approach is studied in detail. The monograph concludes by discussing analogues of the section conjecture created by varying the base field or the type of variety, or by using a characteristic quotient or its birational analogue in lieu of the fundamental group extension. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642306730 
776 0 8 |i Printed edition:  |z 9783642306754 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-30674-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)