Cargando…

A Rapid Introduction to Adaptive Filtering

In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative metho...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Vega, Leonardo Rey (Autor), Rey, Hernan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Electrical and Computer Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-30299-2
003 DE-He213
005 20220112230203.0
007 cr nn 008mamaa
008 120803s2013 gw | s |||| 0|eng d
020 |a 9783642302992  |9 978-3-642-30299-2 
024 7 |a 10.1007/978-3-642-30299-2  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Vega, Leonardo Rey.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Rapid Introduction to Adaptive Filtering  |h [electronic resource] /  |c by Leonardo Rey Vega, Hernan Rey. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 122 p. 23 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
505 0 |a Wiener Filtering and examples -- Steepest descent procedure -- Stochastic gradient adaptive filtering: LMS (Least Mean Squares), NLMS (Normalized Mean Squares) -- Sign-error algorithm, APA (Affine Projection Algorithms) -- Convergence results -- Applications -- LS (Least Squares) and RLS (Recursive Least Squares) -- Computational complexity and fast implementations -- Applications. 
520 |a In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of several topics of interest in the adaptive filtering field. 
650 0 |a Signal processing. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computational Intelligence. 
700 1 |a Rey, Hernan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642303005 
776 0 8 |i Printed edition:  |z 9783642302985 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-30299-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)