|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-642-30296-1 |
003 |
DE-He213 |
005 |
20220120000318.0 |
007 |
cr nn 008mamaa |
008 |
120813s2013 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642302961
|9 978-3-642-30296-1
|
024 |
7 |
|
|a 10.1007/978-3-642-30296-1
|2 doi
|
050 |
|
4 |
|a Q342
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a TEC009000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
100 |
1 |
|
|a Knabe, Johannes F.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Computational Genetic Regulatory Networks: Evolvable, Self-organizing Systems
|h [electronic resource] /
|c by Johannes F. Knabe.
|
250 |
|
|
|a 1st ed. 2013.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2013.
|
300 |
|
|
|a X, 122 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Studies in Computational Intelligence,
|x 1860-9503 ;
|v 428
|
505 |
0 |
|
|a Evolution -- Genetic Regulatory Networks -- Biological Clocks and Differentiation -- Topological Network Analysis -- Development and Morphogenesis.
|
520 |
|
|
|a Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting from a single cell interacting with its environment, eventually including a changing local neighbourhood of other cells. These methods may help us understand the genesis, organization, adaptive plasticity, and evolvability of differentiated biological systems, and may also provide a paradigm for transferring these principles of biology's success to computational and engineering challenges at a scale not previously conceivable.
|
650 |
|
0 |
|a Computational intelligence.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
1 |
4 |
|a Computational Intelligence.
|
650 |
2 |
4 |
|a Artificial Intelligence.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642302978
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642448058
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642302954
|
830 |
|
0 |
|a Studies in Computational Intelligence,
|x 1860-9503 ;
|v 428
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-642-30296-1
|z Texto Completo
|
912 |
|
|
|a ZDB-2-ENG
|
912 |
|
|
|a ZDB-2-SXE
|
950 |
|
|
|a Engineering (SpringerNature-11647)
|
950 |
|
|
|a Engineering (R0) (SpringerNature-43712)
|