Bayesian Hierarchical Space-Time Models with Application to Significant Wave Height
This book provides an example of a thorough statistical treatment in space and time of ocean wave data. It is demonstrated how the flexible framework of Bayesian hierarchical space-time models can be applied to oceanographic processes such as significant wave height in order to describe dependence s...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Edición: | 1st ed. 2013. |
Colección: | Ocean Engineering & Oceanography,
2 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Preface
- Acronyms
- 1.Introduction and Background
- 2.Literature Survey on StochasticWave Models
- 3.A Bayesian Hierarchical Space-Time Model for Significant Wave Height
- 4.Including a Log-Transform of the Data
- 6.Bayesian Hierarchical Modelling of the Ocean Windiness
- 7.Application: Impacts on Ship Structural Loads
- 8.Case study: Modelling the Effect of Climate Change on the World's Oceans
- 9.Summary and Conclusions
- A.Markov Chain Monte Carlo Methods
- B.Extreme Value Modelling
- C.Markov Random Fields
- D.Derivation of the Full Conditionals of the Bayesian Hierarchical Space-Time Model for Significant Wave Height
- E.Sampling from a Multi-normal Distribution.