Cargando…

Supervised Learning with Complex-valued Neural Networks

Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Suresh, Sundaram (Autor), Sundararajan, Narasimhan (Autor), Savitha, Ramasamy (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Studies in Computational Intelligence, 421
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-29491-4
003 DE-He213
005 20220120151952.0
007 cr nn 008mamaa
008 120727s2013 gw | s |||| 0|eng d
020 |a 9783642294914  |9 978-3-642-29491-4 
024 7 |a 10.1007/978-3-642-29491-4  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Suresh, Sundaram.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Supervised Learning with Complex-valued Neural Networks  |h [electronic resource] /  |c by Sundaram Suresh, Narasimhan Sundararajan, Ramasamy Savitha. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXII, 170 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 421 
505 0 |a Introduction -- Fully Complex-valued Multi Layer Perceptron Networks -- Fully Complex-valued Radial Basis Function Networks -- Performance Study on Complex-valued Function Approximation Problems -- Circular Complex-valued Extreme Learning Machine Classifier -- Performance Study on Real-valued Classification Problems -- Complex-valued Self-regulatory Resource Allocation Network -- Conclusions and Scope for FutureWorks (CSRAN). 
520 |a Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks.  Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems. 
650 0 |a Computational intelligence. 
650 0 |a Signal processing. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Signal, Speech and Image Processing . 
700 1 |a Sundararajan, Narasimhan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Savitha, Ramasamy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642294921 
776 0 8 |i Printed edition:  |z 9783642426797 
776 0 8 |i Printed edition:  |z 9783642294907 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 421 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-29491-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)