Cargando…

Belief Functions: Theory and Applications Proceedings of the 2nd International Conference on Belief Functions, Compiègne, France 9-11 May 2012 /

The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions ha...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Denoeux, Thierry (Editor ), Masson, Marie-Hélène (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Advances in Intelligent and Soft Computing, 164
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-29461-7
003 DE-He213
005 20220114173726.0
007 cr nn 008mamaa
008 120425s2012 gw | s |||| 0|eng d
020 |a 9783642294617  |9 978-3-642-29461-7 
024 7 |a 10.1007/978-3-642-29461-7  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Belief Functions: Theory and Applications  |h [electronic resource] :  |b Proceedings of the 2nd International Conference on Belief Functions, Compiègne, France 9-11 May 2012 /  |c edited by Thierry Denoeux, Marie-Hélène Masson. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 444 p. 96 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Intelligent and Soft Computing,  |x 1867-5670 ;  |v 164 
505 0 |a From the content: On belief functions and random sets -- Evidential Multi-label classification method using the Random k-Label sets approach -- An Evidential Improvement for Gender Profiling -- An Interval-Valued Dissimilarity Measure for Belief Functions Based on Credal Semantics -- An evidential pattern matching approach for vehicle identification -- Comparison between a Bayesian approach and a method based on continuous belief functions for pattern recognition -- Prognostic by classification of predictions combining similarity-based estimation and belief functions -- Adaptative initialisation of a EvKNN classification algorithm. 
520 |a The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories.   This volume contains the proceedings of the 2nd International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.    . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Denoeux, Thierry.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Masson, Marie-Hélène.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642294624 
776 0 8 |i Printed edition:  |z 9783642294600 
830 0 |a Advances in Intelligent and Soft Computing,  |x 1867-5670 ;  |v 164 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-29461-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)