Cargando…

Minimum Error Entropy Classification

This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Marques de Sá, Joaquim P. (Autor), Silva, Luís M.A (Autor), Santos, Jorge M.F (Autor), Alexandre, Luís A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Studies in Computational Intelligence, 420
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-29029-9
003 DE-He213
005 20220120124759.0
007 cr nn 008mamaa
008 120724s2013 gw | s |||| 0|eng d
020 |a 9783642290299  |9 978-3-642-29029-9 
024 7 |a 10.1007/978-3-642-29029-9  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Marques de Sá, Joaquim P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Minimum Error Entropy Classification  |h [electronic resource] /  |c by Joaquim P. Marques de Sá, Luís M.A. Silva, Jorge M.F. Santos, Luís A. Alexandre. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 262 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 420 
505 0 |a Introduction -- Continuous Risk Functionals -- MEE with Continuous Errors -- MEE with Discrete Errors -- EE-Inspired Risks -- Applications. 
520 |a This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a System theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Complex Systems. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Silva, Luís M.A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Santos, Jorge M.F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Alexandre, Luís A.  |e author.  |0 (orcid)0000-0002-5133-5025  |1 https://orcid.org/0000-0002-5133-5025  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642290305 
776 0 8 |i Printed edition:  |z 9783642437427 
776 0 8 |i Printed edition:  |z 9783642290282 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 420 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-29029-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)