Cargando…

Self-Evolvable Systems Machine Learning in Social Media /

This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evol...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Iordache, Octavian (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Understanding Complex Systems,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-28882-1
003 DE-He213
005 20220113002505.0
007 cr nn 008mamaa
008 120704s2012 gw | s |||| 0|eng d
020 |a 9783642288821  |9 978-3-642-28882-1 
024 7 |a 10.1007/978-3-642-28882-1  |2 doi 
050 4 |a TA352-356 
050 4 |a QC20.7.N6 
072 7 |a TBJ  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Iordache, Octavian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Self-Evolvable Systems  |h [electronic resource] :  |b Machine Learning in Social Media /  |c by Octavian Iordache. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XXII, 278 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0840 
505 0 |a Introduction -- General Framework -- Differential Models -- Informational Criteria -- Self-Evolvability for Physical and Chemical Systems -- Self-Evolvability for Biosystems -- Self-Evolvability for Cognitive Systems -- Control Systems -- Manufacturing Systems -- Concept Lattices -- Design of Experiments -- Perspectives. 
520 |a This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evolvable and finally to self-evolvable systems is highlighted, self-properties such as self-organization, self-configuration, and self-repairing are introduced and challenges and limitations of the self-evolvable engineering systems are evaluated. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 0 |a Computational intelligence. 
650 0 |a Nonlinear Optics. 
650 1 4 |a Applied Dynamical Systems. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Nonlinear Optics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642288838 
776 0 8 |i Printed edition:  |z 9783642431494 
776 0 8 |i Printed edition:  |z 9783642288814 
830 0 |a Understanding Complex Systems,  |x 1860-0840 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-28882-1  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)